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Dynamical aspects of shallow sea fronts

By C.J. R. GArRRETT} AND J. W. LoDER]

T Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada
1 Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, U.S.A.

We examine the role of internal friction in the evolution of a two-dimensional front in
a rotating stratified fluid. For a two-layer fluid with interfacial friction the depth of the
frontal interface satisfies a diffusion equation with respect to time and the cross-frontal
coordinate. Similarity solutions are used to compare the behaviour of the front for linear
and quadratic interfacial friction laws. For a continuously stratified front a simple
formula is derived for the cross-frontal flow induced by friction, parametrized in terms
of an eddy viscosity coefficient 4y, provided that the Rossby and Ekman numbers are
small. Outside surface and bottom Ekman layers the depth z(x, p, ¢) of an isopycnal with
density p satisfies the diffusion equation z; = [(N?/f?) Ay z,],, where N, fare the Vaisila
and Coriolis frequencies, x is the cross-frontal coordinate and #is time. The consequences
of this for the evolution and maintenance of a front are discussed. The circulation in tidal
mixing fronts is exawuined, with results being presented for a semi-analytic diagnostic
model, which is fitted to two particular continental shelf fronts. A prominent feature is
a two-cell circulation pattern in the plane normal to the front. A variety of cross-frontal
transfer mechanisms are discussed, with order-of-magnitude comparisons of their
importance being made. Transfer by the mean flow appears to be more important than
either shear flow dispersion or the flux associated with baroclinic eddies, but the results
are sensitive to the parametrization of vertical mixing of momentum.
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1. INTRODUCTION

Regions of much larger than average horizontal gradients of oceanic properties are well docu-
mented features of continental shelf seas. Prominent examples are the fronts between well mixed
and stratified water in tidally energetic areas, the fronts between different water masses typically
found at the continental shelf break and the fronts associated with the surfacing of the pycnocline
in response to wind-driven coastal upwelling.

The presence of such fronts is not usually a surprise, and their location can often be explained
quantitatively (as for tidal mixing fronts with the criterion of Simpson & Hunter (1974)).

p
[\ \

_ However, the circulation in fronts and its role in frontal maintenance and biological productivity

; S are still very uncertain, as are the mechanisms and rates of cross-frontal transfers of water

O - properties.

e E For many fronts the basic dynamical balance may well be geostrophic, with the vertical shear

QO of current along the front related to the density gradient across the front. However, further

E o considerations are required for the interpretation or prediction of cross-frontal gradients of the
v

flow parallel to the front, or for an understanding of the cross-frontal flow that will maintain or
modify an existing density structure.

The main goals of this paper will be to examine the cross-frontal flow induced by internal
frictional processes, to examine the implications of predicted flow patterns, and to compare
various possible mechanisms for cross-frontal transfer.
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564 C.J.R.GARRETT AND J.W.LODER

2. THE EFFECT OF FRICTION ON A FRONTAL INTERFACE

As a preliminary problem to demonstrate the role of friction in a rotating system we consider
the situation illustrated in figure 1. A sloping interface at z = —h(x, t) separates two fluids that
differ in density by Ap. If the lower layer is assumed to be at rest, the free surface of the fluid of
density p is elevated by an amount (Ap/p) h above a geopotential at z = 0. This is dynamically
crucial, but unimportant in our discussion of mass balance if Ap <€ p, as we assume.

If the upper layer is in geostrophic motion away from the interface its speed is given by the

Margules formula
V =gf-10r/0x, (2.1)

where g’ is the reduced gravity g(Ap/p). This speed will be reduced close to the interface, where
aninterfacial stress 7 will result in equal and opposite Ekman fluxes 7/fin the two layers (Csanady

z

)x
v

pthp

FiGure 1. Schematic diagram of a front between two water masses of densities p and >+ Ap.

19772, unpublished), as illustrated in figure 1. Convergences or divergences in this Ekman flux
lead to changes in the depth of the upper layer according to the equation

Oh/ot = —B(p-1rf-1) [ox, (2.2)

where we have taken 7 to be the y-component of stress on the upper layer; — 7 is the stress exerted
on the lower layer.
If the stress is linearly proportional to V, as for laminar flow of a fluid of constant viscosity, say
T = — AV, then (2.2) becomes
Oh/ot = Ag'(pf?)—10%h/0x? (2.3)

which is simply a diffusion equation describing the lateral spread of the lighter fluid over the top
of the denser fluid. This result was derived by Stommel & Fedorov (1967) for the similar problem
of the lateral spread of an intrusion in the interior of a fluid. They also derived a diffusion-like
equation when the Ekman depth is not (as we have assumed here) much less than the depth of the
spreading layer.
In any geophysical application it is probably more appropriate to parametrize the interfacial
stress with the quadratic drag law
T =—-CppV|V|, (2.4)

where, according to Csanady (1978, 1980), values between 0.3 x 103 and 0.5 x 10~2 are appro-
priate for the drag coefficient Cy,.
[52]
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DYNAMICAL ASPECTS OF SHALLOW SEA FRONTS 565
Substitution of (2.4) into (2.2) leads to

%}; — Gy 6[|6k/6xgx(a/z/ax)], (2.5)

which is the diffusion equation with variable diffusivity. The rate at which the front decays, owing
to lateral spreading of the upper layer, decreases with time.

One important point is that whatever form is taken by the interfacial stress, and whatever the
ratio of Ekman depth to upper layer depth, the lateral flux in the top layer is equal and opposite
to the flux in the lower layer provided that the stress at the free surface is zero. Any divergence in
the upper Ekman layer is balanced by convergence in the lower Ekman layer, and there is no
need to invoke, as did Tang (1980), upwelling in the lower layer. (Actually the above statements
are slightly imprecise. The mass flux 7/fis equal and opposite so that the volume flux 7/pfis slightly
greater in the upper layer. This discrepancy allows for a simultaneous adjustment of free surface
elevation as well as interfacial depth).

2.1. Similarity solutions

Equations (2.3) and (2.5) could be used to predict the evolution of some initial shape of the
interface (and are perhaps more immediately relevant, in their axisymmetric form, to a study of
Gulf Stream ring decay than to shallow water fronts). A variety of mathematical techniques are,
of course, available for the solution of the linear diffusion equation, but the nonlinearity of (2.5)
makes it much less tractable. However, the difference between solutions of (2.3) and (2.5) can be
clearly illustrated by comparing the similarity solutions for the spread of a d-function of area
Q= f : h(x,t) dx. For (2.3), with Ag’(pf?)~! denoted by K, the well known solution is

h(x,t) = Q(4nKt)~texp[ —x2(4Kt)-1]. (2.6)

For (2.5), dimensional analysis (in which we must treat 4 as having a dimension other than
length) leads to

h(x,t) = Q(K'Qt)*F(¢), (2.7)
where K’ = Cp g'%f 3 and £ = x(K’'Qt)-%. The differential equation satisfied by F(£) is

1 dF d[|dF/d§| (dF/dE)]

Symmetry about £ = 0 and finiteness of F require d#/d§ = 0 at § = 0, so that the first integral
of (2.8) is

(2.8)

YEF = — |dF/dE| (dF/dg). (2.9)
We require F' > 0 so that dF/d§ < 0 for £ > 0, and (2.9) becomes
3EF = (dF/d§)? (2.10)
and F=ds(@-g9 for £<¢ (2.11)
— 36\50 0 .

The solution for § < 0 is obtained by writing — £ for £ in (2.11), and the condition
fffo F(§) dE = 1 gives £, = 2.52 and F(0) = 0.44.

The solution with quadratic friction differs from that with linear friction by decaying like #—%
instead of ¢~ More importantly, with quadratic friction the front meets the surface at a finite
value of #, instead of approaching it asymptotically as x - co. (In fact the work of Stommel &

[ 53]
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566 C.J.R.GARRETT AND J. W.LODER

Fedorov (1967) indicates that this effect could be due to a reduction in lateral flux as the depth
of the upper layer becomes comparable with the Ekman depth.) The front is parabolic in shape
near its intersection with the surface at x = x, = £,(K'Qt)%, with

h(x, t) = {58, Q(K' Q1) ~E (x5~ )2, (2.12)

which can be written h(x,t) = 1K' (dxy/dt) (xy— x)2. (2.13)

This local part of the similarity solution should develop rapidly from any initial distribution of 4.
In particular we notice that the rate of advance of the surface position of the front is

do/dt = 4C5 g% 3h(x, 1) (xo— ). (2.14)

WithCp = 4x 1074, ¢ = 102ms~2 (forAp/p = 1073), f=10"%s~'and » = 50matx,—x =10km
as rather arbitrarily chosen values, this gives dx,/d¢ = 0.08 ms~! for the instantaneous rate of
advance of the front, a value that does not seem too implausible.

The neglect of density diffusion and the assumption of a sharp frontal interface obviously make
itdifficult to apply the above theory in any practical situation, but it may provide some guidance.
In particular it does demonstrate that the basic role of friction is to allow for lateral spread of a
frontal interface and so reduce the geostrophic current.

Before passing on to a discussion of the role of friction in a continuously stratified frontit seems
worth while to complete this section by giving the axisymmetric solutions corresponding to (2.6)
and (2.11). The basic equation (2.2) is replaced by

Oh/0t = —r=20(rp~i1f 1) [Or (2.15)
with a similarity solution for linear friction
h(r,t) = Q(4nKt)exp[ —r?(4Kt)™"], (2.16)

where @ = f : 2nrh(r, ) dr. For quadratic friction the solution is

h(r,t) = 25 Q(K'Qt) = (ot — )2, (2.17)

with 9 = r(K'Q¢t)~% and 5, = 2.23, showing a spreading rate proportional to ¢ as opposed to ¢}
for linear friction, and again giving an interception of the front with the surface at a finite radius.
The solution near the surface position of the front, and the rate of advance of this position, are
exactly as in (2.13) and (2.14) with x, x, replaced by 7, 7,.

3. DECAY OF A CONTINUOUSLY STRATIFIED FRONT

We now progress to a situation in which the density is a continuous function of ¥ and z, but
still assume that the flow is independent of the coordinate y along the front. If we ignore friction
the flow along the front satisfies the thermal wind equation

W/0z =—gfp~10p/0x (3.1)

if we make the usual assumption of ignoring v 0p/0z compared with p 0v/0z.
[54]
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DYNAMICAL ASPECTS OF SHALLOW SEA FRONTS 567

We assume that vertical transfer of momentum can be parametrized in terms of an eddy
viscosity coefficient 4y and wish to examine the way in which this leads to a weak cross-frontal
flow. The governing equations are

Ou /0t +ulu/0x +wou/dz—fo+p=10p/0x = d(Ayu/0z) [0z, (3.2)
Ov/0t+udv/0x +wdv/0z + fu = O(Ay w[dz) [0z, (3.3)
plop/oz+g =0, (3.4)

Op /0t +udp/dx +wdp/0z = 0, (3.5)

Qu/dx +0w/0z = 0, (3.6)

where we assume a hydrostatic balance in the vertical direction, and ignore the diffusion of
density as well as horizontal diffusion of momentum. Taking u, v, w to have scales U, V, W, and
significant variations in the velocity field to occur over horizontal and vertical distances L, H, we
assume V/L < fand Ay < fH? (i.e. small Rossby number and small Ekman number). These
assumptions mean that the first three terms in (3.2) and (8.3) are negligible, and that the viscous
term is also negligible in (3.2). Hence we may substitute on the right-hand side of (3.3) the
geostrophic shear from (3.1), and obtain

u=—gf210(Ay0p/ox)/0z. (3.7)

The continuity equation (3.6) then gives

w=gf2p10(4dyOp/0x)/0x + L(x), (3.8)

where L(x) is an arbitrary function of . These equations for flow in the cross-frontal plane were
derived by Garrett & Horne (1978) who pointed out that L(x) = 0if Ay = 0 at the free surface.
If Ay # 0 either at the free surface or at the bottom (assumed flat), then it will not in general be
possible to choose L(x) to give w = 0 at both boundaries. This problem draws attention to the
fact that (3.7) and (3.8) are not valid within surface and bottom Ekman layers, with thickness
of order (4v/f)*.

However, integrating (3.3) across a surface Ekman layer, with 4y 0v/0z = 0 at the surface and
Ov/0z given by (3.1) at the base of the layer, we obtain an Ekman flux gf—2p—14y 0p/0x. Thus the
vertical velocity in the interior can feed the Ekman flux divergence if L(x) = 0. We conclude that
(3.7) and (3.8), with L(x) = 0, are valid in the fluid interior.

We now examine the evolution of the density field in response to the cross-frontal flow given by
(3.7) and (3.8). The density equation becomes (with subscripts ¢, , z to denote differentiation)

Pt _gf—zp_l[AVpx)sz - (Avpz)xpz] = 0. (3’9)

Gill (1981) pointed out that for a small perturbation from a state of uniform stratification the
vertical advection dominates horizontal advection, and (3.9) resembles the equation for hori-
zontal diffusion, with diffusivity (N2/f?) Ay, where N2 = — (g/p) 0p/0z. We go further by noting
that in general (3.9) may be written, after division by —p,, as

Zp = gf_zp-l[(Aﬁpa:)x*' (AVp:c)zz:c]) (3‘10)
[ 55 ]
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568 C.J.R.GARRETT AND J.W.LODER

where z, = —p,/p, and z, = —p,/p, are respectively the rate of change of depth, and the slope,
of an isopycnal surface. With the Boussinesq assumption this may be written

Zy = [(Nz/f2) AVZ:c]:c +[(N2[f2) szx]zzw: (3’11)

in which x, z, ¢ are still the independent coordinates. However, if we now regard the depth z of an
isopycnal as a function of x, p, ¢, (3.11) becomes

ze = [(N*/[?) Av 2], (3.12)
where the x derivatives are for p, ¢ constant.

This remarkable result shows that, even for variable stratification and variable viscosity, the
depth of an isopycnal satisfies a horizontal diffusion equation, with variable horizontal diffusivity
(N2/f?) dy.

Equation (3.12) may be derived alternatively by a formal change to density coordinates, with
z(x, p, t) the depth of a particular isopycnal, by proceeding from

p = plx,z(x,p, 1), 1]. (3.13)

Differentiation with respect to each of the three variables x, p, ¢, the other two being kept fixed,
leads to

1= P22y O0=py+p.2s, 0=pp+p.2. (3'14)
Differentiation of the second of these equations with respect to x, with p, ¢ constant, and with

respect to p with x, ¢ constant, provides terms suitable for substitution into (3.9), which may then
be manipulated into the form of (3.12).

3.1. Frontal scales

In the absence of density diffusion (3.12) shows that the time-scale for the decay of a con-
tinuously stratified frontis 7" = (f?/N?) L?/Ay, where L is a horizontal scale. For a front on the
continental shelf we take f2/N? = 10~* and L = 10km. Appropriate values for 4y are not really
known, although some of the parametrizations in terms of parameters such as the tidal current
and stratification will be discussed later. For the moment we merely point out that 7" = 10%s ~ 10
days for 4y = 10~2m?s™1, but is nearer 3 months if 4y = 10~3m?s~1.

We may add a term (Kyp,), to the right-hand side of (3.9) to represent the diffusion of
density. If this, together with suitable boundary conditions, were to permit a steady state (though
this is by no means clear), then the ratio of horizontal scale L to vertical scale H should be

L/H ~ (N/f) (4v/Kx)*. (3.15)

We note that this scale, determined mainly from diffusive arguments, is larger by a factor
(Ay/Kv)% than the scale N/f associated with vorticity arguments (see, for example, Pedlosky
1979).

Withrespect toindependentcoordinates x, p,?, the term (Kyp,), may be written (Kyz,™) 2,7,
so that (3.12) becomes

zp = [Av(N*/f?) z,)o — (Kv2,7), (3.16)
= [Av(N?/f?) zo]o = (Kv2,72,) e (3.17)
In these equations the first term on the right-hand side tends fo diffuse away gradients of

z(x, p,t) along isopycnals, as already discussed, and the second term can be thought of as a
[ 56 ]
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diffusion of z across isopycnals with a diffusivity — Ky z,72%, i.e a tendency to sharpen gradients of
z in the cross-isopycnal direction. However, it is not clear that this equation sheds any light on
the problem of frontal maintenance.

3.2. Frontogenesis and frontolysis

We can at least use (3.12) to make some remarks about the tendency of the frictionally induced
flow to either enhance or weaken the horizontal density gradient. We note that the horizontal
diffusion rate of a particular isopycnal is given by the local value of (N2/f2) Ay. Unless Ay is
suppressed by vertical stability by a factor that increases faster than N2, there will thus be a
tendency for the maximum lateral diffusion to occur in the most stably stratified part of the front.
Near the surface this will lead to a sharpening of the horizontal density gradient, or frontogenesis,
on the denser side of a front, and a weakening of the gradient, or frontolysis, on the less dense side.

This conclusion is only valid below a surface Ekman layer, which has a flux given by
Ay gf?p~lp, evaluated at the base of the Ekman layer. Depending on 4y this will tend to have
a maximum in the vicinity of the front, and so, as for the flow below the Ekman layer, will tend
to produce convergence on the denser side of the front.

3.3. Summary

The main conclusions of this section may be summarized as follows.

(i) For low Rossby number and low Ekman number flows, and on the assumption of a
parametrization of turbulent momentum transport in terms of an (variable) eddy viscosity, the
horizontal component of the cross-frontal flow, outside surface and bottom Ekman layers, is
given by the simple formula (3.7) involving the eddy viscosity 4y and density gradients.

(ii) A simple formula for the vertical component of the velocity follows from the continuity
equation.

(iii) Outside surface and bottom Ekman layers, the equation for the advective evolution of
the density field may be manipulated to show that an isopycnal surface satisfies the horizontal
diffusion equation with diffusivity (N2?/f?) 4y.

(iv) As well as elucidating the physical effects of internal friction, this equation permits scale
estimates of a decay time or the aspect ratio (N/f) (4y/Ky)? to be expected in a front in which
density advection is balanced by diffusion with vertical diffusivity Ky,. However, the details of
frontal evolution or maintenance require further work.

(v) Regions of frontolysis and frontogenesis are to be expected near the surface outcropping
of a front. The details are dependent on the parametrization of 4y, but frontogenesis is expected
on the denser side of the front.

4, CIRCULATION IN TIDAL MIXING FRONTS

The summer-time fronts between stratified and tidally mixed water on the continental shelf
form an important class of shallow sea fronts in many places. Although their location can usually
be rationalized by using the energetic criterion of Simpson & Hunter (1974), we lack a coherent
physical theory that can quantitatively account for their development and the circulation
associated with them.

Ideally one would like to solve a model for the interdependent evolution of the density field
and the associated circulation in response to solar heating, and forcing by wind and tide. Quite

[ 57 ]
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apart from the effort required for a numerical solution of such a model, it would be very sensitive
to the parametrization of the turbulent transfer of density and momentum. While numerous
formulae, or modelling techniques, exist for these fluxes, they differ greatly and are particularly
uncertain in stratified conditions (see Rodi (1980) for a recent review and discussion). Moreover,
the mixing formulae that have been developed have usually been calibrated by applying models
to estuarine situations, where vertical transfers could well be partly associated with boundary
mixing and lateral intrusion as well as with local vertical transfers.

Although a coupled model for the evolution of both the stratification and circulation of a tidal
mixing front appears not to have been developed yet, James (1977) has reported a vertical
diffusion model in which parameters describing the eddy diffusivity and its reduction by
stratification were adjusted to allow the model to explain the seasonal evolution of the temperature
profile at four locations straddling a tidal mixing front in the Celtic Sea.

In a later paper James (1978) has computed the flow field associated with the density front
modelled in his 1977 paper, assuming depth-dependent forms for the eddy viscosity and its
reduction by stratification. His results were particularly useful in demonstrating the qualitative
aspects of the circulation to be expected in the plane normal to the front, with a two-cell circulation
giving surface convergence at the front. James (1978) also used his model to demonstrate the
negligible role played by the advective terms in the momentum equation. However, the strength
of the cross-frontal flow remains uncertain owing to the uncertainty in the basic parametrization
of the Reynolds stresses. Moreover, itis easy to check that the strength of the circulation computed
by James (1978) is such that the advective termsin the temperature equation, u07/0x + w37 /0z,
are larger in the neighbourhood of the front than the terms d7'/0t and 0(Ky 07/0z) /0z that were
equated in the earlier model. This suggests either that the cross-frontal flow has been over-
estimated, or that the vertical diffusivity of heat in the frontal region has been underestimated.
This problem does appear to stress the need for a coupled model of cross-frontal flow and
thermocline development, as well as the need for further observations.

Another ‘diagnostic’ model for the circulation to be expected at a tidal mixing front has been
developed by Loder (1980), motivated by oceanographic observations in the Georges Bank area
of the Gulf of Maine in the western North Atlantic (figures 2 and 3). The well mixed nature of
the water over Georges Bank throughout the year is compatible (Garrett et al. 1978) with the
criterion of Simpson & Hunter (1974), but estimates of the flow in the front are required to check
the extent to which the observed anticyclonic flow around the bank is associated with the front,
and also to estimate the cross-frontal fluxes of water properties onto the bank.

4.1. A semi-analytic diagnostic model

Given a prescribed densify field p(x, z), Loder (1980) calculates the horizontal velocity field
implied by the governing equations

—fo+p~10p/0x = 0(Ay 0u/0z) [0z, (4.1)
Ju = 0(dy /0z) [0z, (4.2)
p1op/oz+g = 0. (4.3)

The equations are the same as those used by James (1978), but with the neglect of the advective

terms (which James found to be negligible; over the sloping sides of Georges Bank the term

w dv/0z should, perhaps, not be left out of (4.2)). The pressure is determined by the hydrostatic
[ 58]
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equation, and horizontal mixing of momentum, found by James (1978) to be fairly unimportant
even with a large horizontal eddy viscosity, is ignored.

If the viscous term on the right-hand side of (4.1) is also neglected, our earlier equation (3.7) for
u follows. Leaving the viscous term in (4.1) enables us to check the accuracy of (3.7) and the role
of top and bottom Ekman layers.
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Ficure 2. The Georges Bank region of the Gulf of Maine in the western North Atlantic, with depths in metres.
The bold line indicates the location of the density section shown in figure 3.
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a9 5 Ficure 3. Density section (with contours in o), for the line shown in figure 2,
an o) in August 1976 (redrawn from Limeburner ¢t al. (1978)).

= uw

The cross-frontal pressure gradient is due to the horizontal density gradient and the sea-
surface slope, which is adjusted (as in James 1978) to give zero net cross-frontal volume flux. The
stress Ay (0u/0z, 0v/0z) is taken to be zero at the surface z = 0. At the bottom, or rather at the top
of the constant stress layer at z = — 4, it is equated to a bottom stress £(«, v) linearized about the
tidal current. We note that these conditions imply, on integration of (4.2) from z = —/ito z = 0,
thatv = Qv/0z = 0atz = —h.
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The eddy viscosity Ay is taken to be independent of depth (above the constant stress layer),
and given by .
Ay = A F(Ri), (4.4)
where 4, is the eddy viscosity in homogeneous water and F(R:) is a reducing factor depending on
some average Richardson number Ri.

Following Csanady (1976) we take

uyh/20 for A< O0.1u,/f

4o = {ui/200f for k> 0.1u,/f, (4.5)

where u,, is the average friction velocity for the tidal current; i.c. uy = C%Ut with Cp a bottom
drag coefficient, taken to be 2.5 x 103, and U, the r.m.s. tidal current. The bottom friction
coefficient £ = C,Tj,. We note that for a typical situation with U, = 0.5m s~ and f= 104571,
0.1u,/f1is only 25 m so that for most problems we must take 4, = ug/200f.

o)

|

Do
>
i
B

+Ap \
1 % P L 1

x=0 x=L x=0 x=L

FiGure 4. Isopycnals for s = 0 and s = 1 for the class of fronts described by equations (4.8), (4.9).

The average Richardson number is taken as

Ri = g(Ap/po) / UE, (4.6)
with Ap the change in density over the depth %, and we use the Bowden & Hamilton (1975)
formula
F(Ri) = (1+17Ri). (4.7)
Loder (1980) has used this model to evaluate (z,v) for a distribution of horizontal density
gradient given by

0 10Ap(x
55 =3 —gx(—) {s —cos[nz/h(x)]}. (4.8)
With % constant and
Ap, x <0,
Ap(x) = {%Aﬁ[l +cos (mx/L)], 0 <x < L, (4.9)
0, x=20,

the model represents a tidal mixing front with a surface to bottom density difference Ap on its
stratified side and a cross-frontal difference of $sAp in the depth-averaged density. For s = 0 and
s = 1, the density structures are shown in figure 4.

Other forms of #(x) and Ap(x) can be used in (4.8). The density structure in figure 10 is for

h(x) = hy+ax (4.10)

Ap(x) = Ap(t —x/L), (4.11)
[ 60 ]

and
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where a is the (constant) bottom slope. With variable #, 1A5(1 —s) is just the cross-frontal
difference in surface density.

The two critical dimensionless parameters affecting the circulation are s and an Ekman
number E, defined by Ay (fA?)~!, which varies with x. (We ignore a weak dependence of the
solutions on a third dimensionless parameter, Ay(kk)~, associated with the bottom boundary
condition.) Figures 5-7 show profiles of # and v, with the vertical coordinate non-dimensionalized
by the depth £, and the velocity non-dimensionalized by the speed — $gh(p,f)~10(Ap)/0x that

P would be achieved at the surface in the y-direction with zero friction, s = 1, andv = Oatz = — &.
“~., Figure 7shows that thisisnearly achieved at the surface for s = 1 and very small Ekman numbers,
:é whereas figures 5-7 together emphasize the need for a cross-frontal gradient in mean density, as
>~ > wellas a small Ekman number, if a significant surface flow is to be achieved.
olm
e
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RE 5. Profiles of #, v for a front with
| s = 0 and E-values as shown.
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FiGURE 6. Profiles of u, v for a front with
s = 0.5 and E-values as shown.

The cross-frontal flow, , is small if E'is small. In fact our equation (3.7) predicts a dimensionless
value of Ensinnz which should be valid away from top and bottom Ekman layers (with thick-
nesses of order (2E)# h). Figure 8 shows that the mid-depth value of « compares well with — En
for E'less than about 0.02. We note that, for the particular density chosen, « from (3.7) is negative
throughout the water column, necessarily requiring a compensating positive flow in top and
bottom Ekman layers.

A cross-frontal circulation pattern can be obtained from this model by prescribing E as a
function of x, with E increasing towards the well mixed side of the front owing to the reduced
Richardson number, the (generally) larger #, and hence 4,, and the smaller / (if depth variations
areincluded). One interesting consequence of the model is shown in figure 9. A surface stagnation
point (# = 0 at z = 0) is only achieved within the frontal region for large enough s and E.

[61]

Figure 7. Profiles of u, v for a front with
s = 1 and E-values as shown.
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4.2. Application to particular fronts

The particular density structure represented by (4.8) and (4.9) cannot be matched precisely
to the Celtic Sea front investigated by James (1978), but a reasonable fit is obtained with
Ap = 1.2kgm™3, 5 = 0.5, L = 25km and & = 95 m. With mean tidal current strengths from James
(1977) our model gives Ay~ 10~2m?2s~! (reduced by 0.4 from 4,) on the stratified side of the
front, and 4y ~ 10-2m?s~! on the mixed side. The Ekman number increases across the front
from 0.01 to 0.1. The circulation predicted by the model is then very similar to that computed by
James (1978), with a maximum surface speed along the front of about 0.12 ms~! and a two-cell
cross-frontal circulation pattern with maximum horizontal speeds of about 0.03 ms-1,

0.04 —
107 E 10°

0 }

u(x,—0.5)

—0.08—

\
\Emn

Ficure 8. The non-dimensionalized mid-depth cross-frontal current u(x, —0.5) as a function of the Ekman
number E for s = 0 and s = 1. The dashed line is the low Ekman number asymptotic value — En.

O.OBF—

—0.08f—

;
<

—0.161—

F1cure 9. The non-dimensionalized surface cross-frontal current
u(x, 0) as a function of E for various values of s.

Good quantitative agreement for the surface speed along the front is not surprising. For low
Ekman numbers the interior thermal wind equation (3.1) holds and the boundary condition
v = 0 at the top of the constant stress layer, implied by zero net cross-frontal volume flux, will not
change much through a thin bottom Ekman layer.

Qualitative agreement in the cross-frontal flow is also to be expected, as any form of internal
friction allows water of a given density to seek its own level. Reasonable quantitative agreement,
however, is surprising in view of the very different assumptions made about 4y and its depth-
dependence.

Figure 10 shows the streamlines for the cross-frontal flow with s = 0.5, and A(x) and Ap(x)
chosen, by using (4.10) and (4.11), to approximate the front observed on the south side of
Georges Bank (figure 3). The r.m.s. tidal currents, taken from Greenberg’s (1979) numerical
tidal model, result in ranges of 2.0 x 10~3m?s~1to 3.7 x 10~2m?s~! for Ay across the front, 45 to 0
for Ri, and 0.002 to 0.2 for E. The two-cell circulation pattern, which we have discussed earlier,

[62]
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is very evident, and is likely to be qualitatively correct even if the uncertainties in any para-
metrization of vertical momentum transfer reduce one’s confidence in the magnitude of the
computed currents. We note, in particular, a tendency for dense (cold) water to be upwelled on
the well mixed side of the front, as shown in the observations of Simpson et al. (1978).

The extent to which this circulation pattern is associated with the maintenance, or slow
evolution, of the frontal structure is uncertain. As remarked earlier, the computed cross-frontal
circulation generally gives rise to advective changes in density or temperature at least as large as
those assumed in a local model in which surface heating and vertical mixing are the only processes,
and will certainly lead to a sharpening of horizontal gradients in the surface convergence region
until, perhaps, some new balance is achieved. It is quite possible that such a balance will include
processes other than those of advection and vertical diffusion admitted so far, one candidate
being shear dispersion associated with oscillatory cross-frontal tidal flow.

km

T v\ A\ T T T
~
~

depth/m

Ficure 10. Streamlines ( and — — —) of the cross-frontal flow from application of the model to an approxi-
mation of part of the density section in figure 3. Streamfunction values are given in 102 m? s~! and isopycnals
(=~ ~) in 0 units. The density difference Ap is 3.2 kg m~3

Shear dispersion, and other processes that lead to cross-frontal transfer of water properties,
will be discussed in more detail in the next section, but the mention of oscillatory cross-frontal
flows raises another problem that deserves mention, namely the interrelation of Eulerian and
Lagrangian descriptions of the flow. So far we have implicitly assumed that the density structure
at a fixed point is the average over a tidal cycle, and that vertical transfers can be parametrized
in terms of this density structure. However, if the width of a front is not much greater than the
cross-frontal tidal excursion this approach is clearly dubious. For a model that did not attempt to
resolve tidal frequencies it would be preferable to describe the density field and calculate flows in
a frame of reference moving with the depth-averaged cross-frontal tidal current. In the develop-
ment of a numerical model of a narrow front it would seem sensible to resolve changes at tidal
frequencies, leaving just the effects of higher frequency transfers to be parametrized.

5. MECHANISMS_FOR CROSS-FRONTAL TRANSFER

The location of a tidal mixing front is usually well determined by strong horizontal gradients
of depth/(tidal current)3, as indicated by the success of Simpson & Hunter’s (1974) criterion.
[63]
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However, cross-frontal transfers of water properties can occur, possibly modifying the structure
and properties of the water on each side of the front. In this section we shall examine the relative
importance of cross-frontal transfer by the mean flow discussed in §§ 3 and 4, by horizontal shear
dispersion, by baroclinic eddies and by wind.

5.1. Mean flow flux

For low Ekman number fronts the cross-frontal flow outside top and bottom Ekman layers
is given by u(x, z) from (3.7), so that the associated flux of a water property C(x, z) is given by the
integral over depth of «C. We must add to this any flux in top and bottom Ekman layers, which
must exist to give zero net volume flux across the front. The relative contributions of top and
bottom Ekman layers can be estimated quite simply by using the conditions 4y /0z = 0atz = 0
and z = — 4, the latter condition being related to the need for zero net cross-frontal volume flux
(see §4.1). Hence the net cross-frontal flux due to the mean flow (denoted by F, ;) may be
written for low Ekman number as

0
Fas.= = [ af#071(44p,).Cdz-+f 4 Ayp.CL, (5.1

0
= [ efwavp.Ca (5.2)

Calculations with the model described in § 4.1 indicate that (5.2) gives accurate answers for the
mass flux (putting C = p) for Ekman numbers up to about 0.03, but overestimates the net mass
flux by a factor of 2 when £ = 0.1.

We note that the mean flow flux of mass given by (5.2) may be written as

0
Fop = — f (N2/f2) dyp,dz. (5.3)
~h

This is the same as if it were given by the depth-dependent horizontal diffusivity (N2/f2) Ay
that describes the advective evolution of isopycnals in the fluid interior, as described in § 3.

We note that the mean flow flux of mass is a function of the cross-frontal coordinate x, with the
maximum value occurring in the front. The divergence in this flux can perhaps be balanced by
other horizontal mixing processes on the well mixed side of a tidal mixing front, but will lead to
a progressive decrease in the depth-averaged density on the stratified side of a front in the typical
situation were the average density is less on the well mixed than on the stratified side of the front.
However, before reaching any definite conclusions we must compare the mean flow flux with
other horizontal exchange processes.

If there is some other process that can be parametrized by some horizontal diffusivity Kg
acting on the depth-averaged horizontal gradient of C, then the horizontal mixing flux (F ) is
KHf‘:hCm dz. Thus for the mass flux the ratio F, ; /F, . can be estimated by (N2/f?) (4y/Ky).
We next examine values of Ky appropriate to the well known mechanism of shear dispersion.

5.2. Shear dispersion

Shear dispersion describes the lateral spreading of a substance due to a combination of vertical
shear of the horizontal current and vertical mixing. The topic is reviewed by Fischer et al. (1979)
who also discuss the case of oscillatory flow that is relevant to the present problem, where
significant vertical shears of oscillatory cross-frontal flows are possible, associated with tidal
currents, inertial oscillations or wind-induced flows.

[ €4]
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A significant factor in the effectiveness of shear dispersion in an oscillatory flow is the ratio
T/T, of the period T of the flow to the time T} required for mixing over the depth of the fluid. If
T/T, < 1, then a vertical dye streak would merely oscillate about its mean position without as
much chance for vertical mixing to produce a net horizontal transfer as for 7/T, > 1. Fischer
et al. (1979) have shown that the horizontal diffusivity Ky due to shear dispersion is independent
of T/T, for T/T,> 1 (where T, = h?/Ky), butreduced forsmallvalues of 7//T,.Foralinear velocity
profile and constant Ky they found a reduction factor of 3(7/7T;)2 for T/T, < 0.2.

In fact it is easy to show by simple geometrical arguments that for 7/T;, < 1

Ky = (8?/0?) Ky, ' (5.4)

where $? is the mean-square vertical shear of the horizontal current which oscillates with
frequency w. This value of Ky applies at any depth provided that & in T, = 42/Ky is replaced by
the vertical scale of the shear. (Equation (5.4) may be verified for a particular velocity profile
by examining equation (4.55) of Fischer et al. (1979).)

If T/T, 2 1 the value of Ky depends on the details of the oscillatory current profile as well as
on Ky. Bowden (1965) computed Ky /u,h for several current profiles (where u, is the friction
velocity and he took Ky & 0.06u,#) finding values between 6 and 25. If Ky = uZ/200f, as
discussed in § 4, the appropriate value of Ky needs to be evaluated properly, but if Ky oc Ky~ for
T/T, > 1 (Fisher et al. 1979), then from Bowden’s (1965) results we might expect K ~ 200fh2.

If we take uf/200f from (4.5) as an upper bound for Ky, not allowing for a reduction by
stratification, then the condition 7'/T, < 0.2 reduces to the requirement that the r.m.s. tidal
current U; be less than 50(fw)?h. For f= 10-%s71 and w = 1.4 x 10~4s~1, appropriate to M,,
this becomes U; < 0.3ms™! if we take k= 50m. The condition 7/7, > 1 would require
U, > 0.7ms-1. As Ky will be substantially reduced by stratification, the formula (5.4) seems to
be the appropriate one to use in the front. The ratio of the mean flow flux to the shear dispersion
flux (Fy 4.) of mass across the front is then

Fos/Fsa. ® (N?/f?) (0*/8?) (Av/Ky) (5.5)
= (N?/S$?) (0*/f?) Pr, (5.6)

where Pr is the eddy Prandtl number.

As the Richardson number N2/S2 for the oscillatory flow is likely to be of order 1 or more, and
w?[f* = 2for M, tides at mid-latitudes and 1 for inertial oscillations, the ratio Fy, ; /F 4. depends
mainly on the eddy Prandtl number, which is usually assumed to be large in stratified conditions.
We conclude that the cross-frontal flux associated with the mean flow is likely to be significantly
greater than that due to shear dispersion associated with either inertial oscillations or tides.
However, it is possible that low frequency wind-induced cross-frontal excursions could lead to a
greater importance of shear dispersion if 7" > T, for which F, ; /F; 4. & (N?/f?) Ay/(200fh?).
Also, even if the mean flow flux appears to be greater than the shear dispersion flux at tidal
frequencies, the tidal oscillations may produce periods each tidal cycle during which the vertical
density gradient is reduced (Allen et al. 1980), vertical mixing enhanced, and so the mean flow
flux greater than it would be without cross-frontal tidal excursions.

The comparison of the mean flow flux and the shear dispersion flux in (5.5) refers to the depth-
integrated values of the mass flux. While it suggests that the shear dispersion associated with tidal
and inertial oscillations is not important for the net mass flux, it is quite possible that horizontal

shear dispersion plays an important role in the evolution of the density field at some depths.

[ 65 ] 57-2
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Moreover, it is clear from the above discussion that the shear dispersion flux is of increasing
relative importance as the well mixed side of the front is approached, and could there, perhaps,
- pick up part of the flux that is carried by the mean flow within the front.

5.3. Barotropic eddies

In tidally energetic shallow seas the horizontal mixing coefficient Ky generally seems to be
much greater than that attributable to shear dispersion. Zimmerman (1976) has shown how
oscillatory tidal excursions in a field of barotropic residual eddies, which may themselves be
generated by tidal flow over bottom topography or past prominent coastal features (Zimmerman
1978), can lead to values of Ky up to 103m?2s~1. Clearly a value this large can be greater than the
effective Ay N2/f? due to the mean flow flux in § 5.1, but further work is required to establish
the local value of Ky associated with this mechanism in any particular frontal region.

5.4. Baroclinic eddies

Most fronts on the continental shelf show significant low frequency eddy activity with a
horizontal scale of order 10km. It is usually assumed that the eddies arise from baroclinic
instability of the frontal jet, and it is suspected that they play an important role in cross-frontal
transfer. Pingree (1978, 1979) has examined the problem for various fronts in the Celtic Sea and
other areas of the northwest European continental shelf, and used Green’s (1970) formula for
poleward heat transfer in the atmosphere to make an estimate of the cross-frontal heat flux for
continental shelf fronts. Our main purpose here is to compare Pingree’s (1979) estimate of the flux
due to baroclinic eddies with our estimate of the cross-frontal flux associated with the mean flow.

We envisage a front like that shown in figure 3 on the south side of Georges Bank. For such a
front (with 0 < s < 1 in the context of our model in §4), the mean flow across it tends to move
light water onto the bank near the surface, dense water onto the bank near the bottom, and water
ofintermediate density off the bank at mid-depth. The net effect depends on the vertical structure
of Ay (see equation (5.3)), but probably tends to increase the density of water on the bank.

Calculations for a three-layer model, with isopycnal and bottom slopes similar to those
shown in figure 3, indicate two modes of baroclinic instability, one largely associated with
each interface (Wright 1978). Bottom friction is likely to prevent growth of the deeper mode,
so we assume that eddies generated by baroclinic instability are confined to the upper part
of the water column from the surface to, say, the depth D at which the horizontal density
gradient vanishes (although further theoretical and observational work is clearly required to
check this). Following Pingree (1979) we then estimate the net baroclinic eddy flux (%, ) of

mass off the bank to be
By, .. = a(g'D)} (3Aps) D. (5.7)

Here Aps is the surface density difference across the front and (g'D)%, with g’ = gAps/p,, is the
maximum speed that could result from potential energy release. The coefficient ¢ is a dimension-
less multiplier which Pingree takes to be 0.0055, following Green (1970), and we have taken $Aps
as the average density difference across the front between the surface and depth D.

We compare Fj, . not with the mean flow flux over the whole depth (which, as mentioned, is
likely to have the opposite sign), but rather with the flux associated with the surface Ekman layer
and whatever depth is required for a compensating volume flux. The net mass flux for this part

of the mean flow is then
Foy = gf2p7Av(dp/0x) (34ps), (5.8)
[ 66 ]
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where 0p /0x is the surface density gradient, which we take as Aps/Ls, with L the horizontal scale
of the front. The ratio of mean flow flux to baroclinic eddy flux may then be written

Fos/ Fye. = Av(fD?) oLy /Ls), (5.9)

where Ly, is the internal Rossby radius of deformation (g’D)#/f. A typical value of Ap, for the tidal
mixing fronts in the Gulf of Maine is 0.5kgm=3, and D ~ 20m, so Ly ~ 3km for f = 10451,
Then with 4y ~ 10~2m?2s~! in the centre of the front, & = 0.0055 and Ls ~ 20km we have
Fy 1. /F, e = 7,s0 that the baroclinic eddy flux appears to be less important than that associated
with the mean flow. However, we must remember that the mean flow flux varies across the front,
so that other processes are required to maintain a balance.

The estimates above are critically dependent on the values of Ay and « as well as on our
assumption about the depth of the baroclinic zone. The parameter @ may be interpreted in terms
of the time 7}, between the exchange across the front of circular rings of fluid of radius R, with
two rings requiring a distance 4R along the front. Assuming again that only a depth D is affected
and that the exchanged water parcels have average densities that differ by 3Aps gives a net
mass flux

Fy o = nR2(3Aps) D(4R) 1 T ;1. (5.10)
Equating this to (5.7) gives
a = §(R/Lg) (Ti/T) (5.11)

where Ly = (g'D)%/fis, as before, the Rossby radius based on Aps and D, and T; = 2rf ! is the
inertial period.

Observations of eddies in infrared imagery of the fronts around Georges Bank suggest R ~ 5Ly
(possibly closer to a Rossby scale based on the total depth), so for & = 0.0055 we require eddies to
form and cross the front about every 80 days. Even after allowance has been made for spatial as
well as temporal intermittency, preliminary examination of infrared images suggests that eddies
may be slightly more frequent than this, so that (5.7) slightly underestimates the cross frontal
mass flux. Moreover, the vertical eddy viscosity used in evaluating the mean flow flux, while
obtained from existing formulae, may well turn out eventually to be an overestimate.

Itis quite possible that baroclinic eddies are the major factor in cross-frontal transfers, though.
of course, smaller scale mixing is still required if the eddies are to merge into their new sur-
roundings. We also point out that eddy formation stretches a front and so is presumably
associated with lateral convergence which may play a role in frontal maintenance.

5.5. Wind-driven transfer

We must also consider the possibility that the dominant cross-frontal transfer of water pro-
perties is associated with a steady, or low-frequency, cross-frontal flow due to surface wind stress.
As an example let us consider a wind stress 7 parallel to the front, producing a cross-frontal Ekman
flux 7 /pf. Assuming that a return flow is set up, and that the two flows differ in average density by
3Aps, i.e. half the surface density difference across the front, the wind-driven flux (F_4.) of massis

Fy.a. = 1p7Y 1 (34ps). (6.12)

Comparing this with the partial mean flow flux, as defined in (5.8), we obtain

Funs/Fy.a. = &f 1Ay (Op/0x) 771, (5.13)
[ 67 ]
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Taking, as in §5.4, Ay = 10~2m?s~! and 0p/0r ~ 0.5kgm—3/20km we see that for the wind
driven flux to be comparable with the mean flow flux requires a wind stress of only 0.025 Pa, and
hence an average wind of only about 4 ms~!. However, this comparison ignores the rest of the
mean flow flux (§5.1) which could be greater.

Further work on this is obviously required, particularly allowing for time-dependent winds
and relating the above estimate to the discussion of shear dispersion in § 5.2. Also, the increased
vertical mixing on the well mixed side of a tidal mixing front will tend to produce a flow more
nearly parallel to the wind than on the stratified side of the front (Hopkins & Garfield 1979). This
raises interesting possibilities for surface convergence at the front.

5.6. Summary

A comparison of five mechanisms for cross-frontal transfer suggests the dominance of the flux
associated with the frictionally induced mean flow, at least for typical tidal mixing fronts and
existing parametrizations of vertical mixing, although it could be exceeded by dispersion due
to tidal excursions in barotropic residual eddies over topography. The net horizontal transfer by
shear dispersion in inertial and tidal oscillations is likely to be less than the mean flow flux
provided only that the eddy Prandtl number in a stratified fluid is large. The transfer by baro-
clinic eddies appears to be less than the mean flow flux in mid-front, but this conclusion could
easily change if it turns out that existing formulae overestimate Ay. A factor that may be as
important as any other is the wind stress parallel to the front.

Observations of cross-frontal eddy fluxes of water properties are clearly required. The
frequency dependence of cross-spectra of the cross-frontal velocity component and, say, density,
at a number of depths and lateral positions should provide useful clues on cross-frontal transfer
mechanisms. However, careful distinction between Eulerian and Lagrangian, or semi-
Lagrangian, estimates will be required. It is possible, for example, that one would find a peak
at the tidal frequency in the cross-spectrum of Eulerian variables, giving the impression of shear
dispersion even though the flux might be more sensibly thought of as a mean flow flux in a frame
of reference moving normal to the front with the depth-averaged tidal current.

One process for cross-frontal transfer that has not been discussed is the large-scale entrainment
by eddies generated elsewhere. The process is clearly important for an area like Georges Bank
which can be greatly influenced by Gulf Stream rings, but requires separate discussion for each
situation, rather than lending itself to the fairly general description we have given to other
processes.

6. DiscussioN

The main thrust of this paper has been to examine the role of internal friction in the evolution
of an oceanic front. Application of the general results on cross-frontal flow derived in § 3 shows
that, with existing parametrizations of vertical mixing of momentum on the continental shelves,
the frictionally induced cross-frontal flow makes an important contribution to the local density
balance in a tidal mixing front, and appears to dominate shear dispersion and baroclinic
eddies in producing cross-frontal transfer. This cross-frontal flow, which basically describes the
tendency of fluid to seek its own level if the constraint of geostrophy is broken by friction, tends
to lead to an increase of horizontal gradients on the mixed side of a tidal mixing front, but
further work with a coupled model of thermocline development, including horizontal
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advection as well as vertical mixing, is required for an investigation of the development and
structure of a front.

The results described in this paper are clearly very sensitive to the parametrization of vertical
momentum mixing in terms of factors such as tidal current, water depth and stratification. In
stratified conditions in particular existing formulae are very uncertain. Our own suspicion is that
they tend to overestimate the mixing rates, but clearly much more work involving inference from
observations of the mean flow and direct eddy flux measurement is required.
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